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Early stages of unsteady viscous flows around a circular cylinder at  Reynolds 
numbers of 3 x lo3 and 9.5 x lo3 are analysed numerically by direct integration of the 
Naviedtokes equations - a fourth-order finite-difference scheme is used for the 
resolution of the stream-function equation and a second-order one for the vorticity- 
transport equation. Evolution with time of the flow structure is studied in detail. 
Some new phenomena are revealed and confirmed by experiments. 

The influence of the grid systems and the downstream boundary conditions on the 
flow structure and the velocity profiles is reported. The computed results are 
compared qualitatively and quantitatively with experimental visualization and 
measurements. The comparison is found to be satisfactory. 

1. Introduction 
The time development of an incompressible viscous flow induced by an impulsively 

started circular cylinder is a classical problem in fluid mechanics. Despite the 
simplicity of the obstacle geometry, the flow structure is complex and all the 
phenomena of fluid mechanics are present. That is why, for more than a century, 
numerous theoretical, numerical and experimental investigations have been reported 
in the literature. 

Theoretical works concerning the unsteady flow around an impulsively started 
circular cylinder are generally based on boundary-layer theory. Blasius (19O8), 
Goldstein & Rosenhead (1936), Schuh (1953), Wundt (1955) and Watson (1955) have 
all considered this problem in the limiting case of infinite Reynolds number. Some 
authors (Wang 1967; Collins & Dennis 1973a, b) have extended their work to finite 
but high Reynolds numbers. The results are only available for short spans of time 
after the starting. 

Purely numerical solutions of the unsteady Naviedtokes equations have also been 
developed and applied to this problem. These are, on the whole, valid for any value 
of the Reynolds number. However, no results for Reynolds numbers greater than 2000 
have previously been obtained numerically and compared satisfactorily with 
experimental visualization. 

The first numerical solution of unsteady flow around a circular cylinder was given 
by Payne (1958) for Reynolds numbers of 40 and 100. Other investigations were 

4-2 



94 

FIGURE 1.  Schematic of the physical problem: (a) phenomenon a; (a) phenomenon p. 

proposed by Kawaguti & Jain (1966), Ingham (1968), Son & Hanratty (1969), Jain 
& Rao (1969), Thoman & Szewczyk (1969), Dennis & Staniforth (1971), Patel (1976) 
and Daube & Ta Phuoc LOC (1978). The common points of interest of these works 
are the development of the main unsteady wake length behind the cylinder, and the 
time evolutions of the drag coefficient and of the separation angle. An attempt to 
analyse secondary-vortex formation has been presented by Ta Phuoc LOC (1980) for 
Reynolds numbers up to 1OOO. 

Besides these theoretical and numerical investigations, some experimental visual- 
izations were described by Honji & Taneda (1969), Taneda (1972) and Coutanceau 
& Bouard (1977,1979). The phenomena of the formation and the development of the 
main and secondary vortices have been studied qualitatively and quantitatively in 
detail by Bouard & Coutanceau (1980) for Reynolds numbers up to lo4. 

Several comparisons between experimental data and numerical or theoretical 
results have been carried out, and they show good agreement for Reynolds numbers 
up to lo3. A discrepancy exists for greater Reynolds numbers, especially at  the first 
moment of the starting. 

The aim of the present paper is to analyse the flow structure at early times of the 
impulsively started circular cylinder at Reynolds numbers of 3 x lo3 and 9.5 x lo3, 
which are values for which experimental data exist. The phenomenon p of ‘ forewake ’ 
(figure 1) detected by visualization at Re = 9.5 x lo3 by Bouard & Coutanceau (1980) 
is found in numerical simulation at the same instant. The secondary vortices, which 
are stable and confined in the main wake for Re < lo3, become unstable for greater 
Reynolds numbers. They interact alternatively with the external main flow and the 
primary wake for Re = 9.5 x lo3. This phenomenon is brought out by numerical 
simulation and confirmed by experimental visualization. To ensure the validity of 



FIQWE 3. Comparison between experimental and numerical results 
for the velocity profile for Re = 3000. 
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FIGURE 2. Evolution with time of the vorticity repartition on 
the surface of the cylinder for Re = 3000. 
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FIGURE 4. Evolution with time of the flow structure for Re = 3000. 
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I 
FIUURE 5. Comparison of the flow structure obtained by experimental visualization 

and by numerical simulation for Re = 3000 ; t = 1. 

numerical results, two grid-systems have been used for a Reynolds number of 
9.5 x 108. 

All the computations given in this paper are compared with experimental 
visualization. 

2. Basic equations 
In stream-function and vorticity formulation the unsteady Navier-Stokes equa- 

tions can be written as 
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FIQURE 6. As figure 5 ;  t = 2. 

aw" i a (w"g)-;(w"g)) = U V 2 6 ,  

w" = v$, 
with 

where (7,O) are polar coordinates, u is the kinematic viscosity and f the time. The 
variables $ and w" are defined by 
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FIQURE 7. As figure 5 ; t = 3. 

If we write 

2U,a f 
Re,= - , t=-ucO,  

V a 
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FIQURE 8. As figure 5; t = 4. 

(3a 

urn 
J w = - ,  

then (1) and (2) become, in dimensionless form, 

with 
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FIGURE 9. As figure 5; t = 5. 

3. Boundary and initial conditions - numerical method 
3.1. Boundary and initial conditions 

To complete the equations (3) and (4), the boundary and initial conditions of the 
physical problem are 

(i) no slip on the surface of the cylinder; 
(ii) uniform flow at infinity; 
(iii) initially, the cylinder at rest in the fluid. 

These conditions can be written in stream-function and vorticity formulation as 
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FIGURE 10. Evolution with time of the vorticity repartition on 
the surface of the cylinder for Re = 9500. 

$ = 2 sinhnc s i n q ,  
w = o  

no condition on w ]  

Equation (4) gives also 

This condition is necessary in the fourth-order compact numerical algorithm, and 
allows us to determine the boundary value for w a t  the surface of the cylinder. 

Unlike Collins t Dennis (1973), who use the boundary-layer solution as the initial 
conditions in their truncation-series method, we have chosen, in our studies, the 
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' 4.0 Numerical results: - 

FIGURE 11. Comparison between experimental and numerical 
results for the velocity profile for Re = 9500. 
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steady solution of very low Reynolds number (Re = 5 )  of the Navier-Stokes 
equations as initial conditions. This choice is justified by experimental observations, 
and is consistent with the Navier-Stokes equations. The starting movement is 
obtained with an abrupt change of Reynolds number. 

In fact, in the problem of unsteady flow around a circular cylinder fitted with an 
attached flap, for which there does not exist any analytical boundary-layer solution, 
we have considered two classes of initial conditions. First, the flow is assumed to be 
initially irrotational with or without the Kutta-Joukowski condition. Secondly, the 
flow is supposed to be in the Stokes regime, and a solution of the NavierStokes 
equations for very low Reynolds number gives the initial conditions. Our numerical 
results have been compared with the experimental visualization carried out by the 
Laboratoire de MBcanique des Fluides de Poitiers. From this comparison it can be 
stated that the second class of the initial conditions is the only solution that 
reproduces correctly the flow structure and the starting vortex. This procedure has 
shown excellent agreement in space and time between numerical and experimental 
results . 

3.2. Numerical method 
Details of the numerical scheme have been clearly explained in Ta Phuoc LOC (1980). 
It is a hite-difference method, which uses a fourth-order compact scheme to solve 
the stream-function Poisson equation and a classic second-order one for the transport 
equation of the vorticity. The divergence form of the convection terms is considered 
with a second-order discretized formula. 

This method was also applied successfully to the problem of the stall around an 
airfoil by Monnet et al. (1983). 
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(4 

FIQURE 12(a). For caption see facing page. 

4. Results 
The numerical calculations have been made on a NAS 9080 computer. For a 

Reynolds number of 9500 two values of roo and two types of boundary conditions 
at ‘infinity’ are considered. A t  the first stage the irrotational flow has been imposed 
at  this downstream boundary. At the second stage we have imposed an open 
boundary condition for the downstream flow. The domain of calculation is limited 
to 0 < B < x because of the symmetry of the phenomenon at the initial moment of 
the starting. 

4.1. Re = 3000 

In Ta Phuoc LOC (1980) it  was shown, by numerical simulation, that secondary 
vortices appear for Reynolds numbers up to 1000. A pair of secondary vortices 
(phenomenon a) (figure 1) is only apparent a t  Re = 1000. To confirm this flow 
structure, we consider here a calculation corresponding to Re = 3000, a value for 
which experimental visualizations and measurements have been obtained by Bouard 
& Coutanceau ( 1980). 
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(b)  

FIQURE 12. Influence of the grid system and of the domain of calculation on 
the flow structure: (a)  101 x 301 nodes; (a) 201 x 301 nodes. 

For this Reynolds number a grid system of 101 x 141 nodes has been chosen. The 
physical domain is limited by 1 < r < 10 and 0 < 8 < x .  The dimensionless time step 
is taken as 0.02. Irrotational flow has been imposed at the downstream boundary. 
The third-order-accurate formula has been used to  calculate the vorticity a t  the 
surface of the cylinder. 

The evolution with time of the vorticity distribution a t  the surface of the cylinder 
is reported in figure 2. The quantitative comparison (figure 3) for the radial velocity 
on the symmetry axis behind the cylinder showsgood agreement between experimental 
data and computational results. We can see the existence of values of velocity 
modulus greater than 1 in the primary vortex. However, this maximum modulus of 
the velocity in the wake decreases when the Reynolds number increases from 1000 
to  9500. Flow patterns at different times are shown in figure 4, showing the growth 
of primary and secondary vortices. At this Reynolds number, secondary vortices are 
always confined in the main wake and do not communicate with external flow. In  
figures 5-9 comparisons of the flow structure at t = 1, 2, 3, 4 and 5, given by 
experimental visualization and numerical simulation, are found satisfactory. All the 
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13 

FIGURE 13. Evolution with time of the flow structure for Re = 9500; t = 0.4-2.0, 
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FIGURE 14. As figure 13; t = 2.44.0.  
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FIGURE 15. Comparison between experimental and numerical 
results on the unsteady main-wake length. 

details of the flow pattern observed in visualization have been pointed out by 
computational treatment of the unsteady Navier-Stokes equations. We have 
demonstrated that the phenomenon a can be clearly exhibited by a numerical 
simulation and that it is much more accentuated than for Reynolds number equal 
to 1000. 

4.2. Re = 9500 
In Bouard & Coutanceau (1980) two main phenomena have been observed for 
Reynolds numbers greater than 500: the phenomenon a, which is visible from 
Re = 1OOO; and the phenomenon p (figure l ) ,  observed at a very early phase of the 
flow establishment only for Reynolds numbers greater than 3000. Our purpose in this 
part is to analyse the phenomenon p numerically with sufficient accuracy. The 
formation and the stability of the so-called ‘forewake’ will be examined. For these 
reasons, the influence of different parameters such as the boundary conditions, the 
mesh size and the computation domain on the numerical results have also been 
considered. 

Two values of the mesh size and two domains of computation ( r ,  = 5; T, = 9.2) 
have been chosen for all calculations. The boundary conditions for the vorticity at 
the surface of the cylinder have been developed with second-order- or third-order- 
accurate formulas : 

6 
2d0,  7) 40,7) + s W ,  7) w(AE, 7) = - ($(At,  7) -$.CO, 7)) + o((At)2), @El2 

Numerical results obtained with these two boundary-condition formulas have shown 
a negligible influence of the mesh size used. 
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FIGURE 16. Comparison of the flow structure obtained by experimental visualization 
and by numerical simulation for Re = 9500; t = 1.2. 
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FIQURE 19. As figure 16; t = 2.8. 
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FIGURE 20. As figure 16; t = 3.2. 
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FIGURE 2 1. As figure 16 ; t = 4. 
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For the downstream boundary condition at infinity an open boundary condition 
has been established by assuming that the viscous-diffusive effect is negligible ; the 
transport terms of the vorticity equation are then the only ones retained: 

This condition is similar to the so-called ‘radiant Sommerfeld condition ’. With a 
one-side-discretized formula, this condition can be written as 

where n + 1, n,  n - 1 represent the time index. This open boundary condition permits 
the effect of reflection to be reduced. A theoretical analysis of the reflection 
characteristics is not possible for the general case. 

Calculations carried out with the irrotational-flow boundary condition and the open 
boundary condition on the downstream side have shown the efficiency of the latter : 
the domain of computation can be limited to about five radii of the circular cylinder 
without causing perturbations on the formation of the vortices. 

The vorticity distribution at the surface of the cylinder is shown in figure 10. The 
appearance of the peaks of vorticity and a multiplication of secondary vortices may 
be noticed. The evolution with time of the radial velocity, behind the cylinder, on 
the axis of symmetry is compared with the experimental data in figure 1 1 ,  and this 
comparison is found to be satisfactory. The influence of the mesh size and of the 
domain of computation on the flow structure induces a slight variation, aa shown in 
figures 12 (a ,  b) at  t = 2. The development of the flow pattern with time is presented 
in figures 13 and 14 for a grid system of 101 x 301 nodes, and a domain of computation 
limited by Tar = 5 and 0 < 0 < x .  The dimensionless time step is equal to 0.02. The 
main unsteady wake length behind the cylinder, measured experimentally and 
determined by numerical simulation, is shown in figure 15, and confirms a good degree 
of quantitative comparison. In  figures 16-21 a comparison between experimental 
visualization and numerical results for the flow structure is shown; there is good 
agreement. The phenomenon p, observed experimentally, can be seen for all grid 
systems. The secondary vortices interact alternatively with the external flow and the 
main wake (figure 14, t = 3.6; figure 18, t = 2) .  

5. Conclusion 
Results reported in this paper demonstrate that a correct numerical solution of the 

unsteady Naviel-Stokes equations is a good way to simulate the time evolution of 
viscous flow around a circular cylinder for Reynolds numbers up to lo4. 

The efficiency of the high-order numerical scheme used in this paper is confirmed, 
and we hope to use it for greater Reynolds numbers. 
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Phenomena a and p detected in experimental visualization have been repro- 
duced in detail by numerical simulation. The phenomenon of iteration between the 
external main flow and the secondary vortices has been pointed out for the first time, 
as shown in figure 14, t = 3.6, and figure 18, t = 2. 

The increase of Reynolds number involves the multiplication of secondary vortices 
and the existence of a peak of vorticity at the surface of the cylinder, inside the 
separation area. 

R E F E R E N C E S  

Busms, H. 1908 Grenzschichten in Fliissigkeiten mit kleiner Reibung. 2. angew. Math. Phys. 
56, 1. 

BOUARD, R. & COUTANCEAU, M. 1980 The early stage of  development of the wake behind an 
impulsively started cylinder for 40 < Re < lo4. J .  Fluid Mech. 101, 583. 

COLLINS, W. M. & DENNIS, S. C. R. 1973a The initial flow past an impulsively started circular 
cylinder. Q. J .  Mech. Appl. M a t h  26, 53. 

COLLINS, W. M. & DENNIS, S. C. A. 1973b Flow past an impulsively started circular cylinder. J .  
Fluid Mech. 60, 105. 

COUTANCEAU, M. & BOUARD, R. 1977 Experimental determination of the main features of the 
viscous flow in the wake of a circular cylinder in uniform translation. Part 2. Unsteady flow. 
J .  Fluid Mech. 79, 257. 

COUTANCEAU, M. & BOUARD, R. 1979 Sur la formation de tourbillons secondaires dans le sillage 
d’un cylindre soumis B un d6part impulsif. C.R. Acad. Sci. Paris 288, B45. 

DAUBE, 0. & TA PHuoc LOC 1978 Etude num6rique d’6coulements instationnaires de fluide 
visqueux incompressible autour de corps profile par une mhthode combink d’ordre O(h2), O(h’). 
J .  M k .  17, 651. 

DENNIS, S. C. R. & STANIFORTH, A. N. 1971 A numerical method for calculating the initial flow 
past a cylinder in a viscous fluid. In  Proc. 2nd Intl Con$ on Numerical Methods in Fluid 
Dynumics (ed. M. Holt). Lecture Notes in Physics, vol. 8, p. 343. Springer. 

GOLDSTEIN, S. & ROSENHEAD, L. 1936 Boundary layer growth. Proc. C a d .  Phil. Soc. 32, 392. 
HONJI, H. & TANEDA, S. 1969 Unsteady flow past a circular cylinder. J .  Phys. Soc. Japan 27,1968. 
INQHAM, D. B. 1968 Note on the numerical solution for unsteady viscous flow past a circular 

cylinder. J .  Fluid Mech. 31, 815. 
JAIN, P. C. & RAO, K. S. 1969 Numerical solution of unsteady viscous incompressible fluid flow 

past a circular cylinder. Phys. Fluids Suppl. 12,II-57. 
KAWAQUTI, M. & JAIN, P. C. 1966 Numerical study of a viscous fluid past a circular cylinder. J .  

Phys. Soc. Japan 21, 2055. 
MONNET, P., COUTANCEAU, M., DAUBE, 0. & TA PHuoc LOC 1983 The use of visualization as a 

guide in the numerical determination of the flow around an abruptly accelerated elliptic 
cylinder or airfoil. In Proc. 3rd Intl Symp. 012 Flow Visuulization, Ann Arbor. 

ORSZAQ, S. A. & ISRAELI, M. 1974 Numerical simulation of viscous fluid flow. Ann. Rev. Fluid Mech. 
6 ,  281. 

PATEL, V. A. 1976 Time dependent solutions of the viscous incompressible flow past a circular 
cylinder. C m p .  Fluids 4, 13. 

PAYNE, R. B. 1958 Calculations of unsteady viscous flow past a circular cylinder. J .  Fluid Mech. 
4, 81. 

SCHUH, H. 1953 Calculation of unsteady boundary layers in two dimensional laminar flow. 2. 
Flqwisa. 1, 122. 

SON, J. S. & HANRATTY, T. J. 1969 Numerical solution of the flow around a cylinder at Reynolds 
number of 40, 200, 500. J .  Fluid Mech. 35, 369. 

TANEDA, S. 1972 Visualization experiments on unsteady viscous flows around cylinders and plates. 
I n  Recent Research 012 Unsteady Boundary Layers, vol. 2 (ed. E. A. Eichelbrenner). Quebec 
Lava1 University. 



Numerical solution of viscous flow around a cylinder 117 

TA PHuoc LOC 1980 Numerical analysis of unsteady secondary vortices generated by an 

THOM, A. 1933 The flow past circular cylinders at low speeds. Proc. R. Soc. Lond. A 141, 651. 
THOMAN, D. C. t SZEWCZYK, A. A. 1969 Time dependent viscous flow over a circular cylinder. 

WANO, C. Y. 1967 The flow past a circular cylinder which is started impulsively from rest. J. M d h s  

WATSON, E. J. 1955 Boundary layer growth. Proc. R .  Soc. Lond. A 231, 104. 
WUNDT, H. 1955 Wachstum der laminaren Grenzschicht an schrag angestromten Zylindern bei 

impulsively started circular cylinder. J. Fluid Mech. 100, 11 1. 

Phya. F l ~ i d ~  Supp1. 12, 11-76. 

& Phys. 46, 195. 

Anfahrt aua der Ruhe. Zng.-Arch. Berlin 23, 212. 


